TECHNICAL DATASHEET

251E-28-SD

300 Watt, non isolated, single output buck-boost converter

All parameters defined on Ta=25°C, IoNom = 11.0 ADC and UiNom = 24VDC

ABSOLUTE MAXIMUM RATINGS

parameter	unit	typ
Input peak voltage	VDC	37.00
Feedback protection against overvoltage on the output	VDC	45

THERMAL CHARACTERISTICS

parameter	min to max	typ
Ambient temperature range	-40°C / +85°C	
Max. case temperature for thermal shut down [°C]		+90°C
Storage temperature (device not in operation)	-10°C / +65°C	
Relative maximum humidity under storage		75% RH
Storage under worst conditions [in days]		25

COMMUNICATION INTERFACE

parameter	unit	fulfilled	min to max
Option shut down (left open for operation)			

SPECIALS

parameter	unit	fulfilled	conditions	typ	
Switching frequency	kHz			115	
Efficiency at medium loads	%		0.5loNom	94.30	
Efficiency at full loads	%		loNom	93.20	
For active loads or parallel connection		✓			
Drives high capacitive loads		\checkmark			

COMPLIANCE

fulfilled	notes
✓	
✓	
✓	
✓	
√	
√	
	fulfilled

All technical and general information is provided in all conscience. However, completeness and accuracy cannot be guaranteed. Demke recommends to fully test the product in its determined application. Due to permanent improvements to our products, we reserve the right to change specifications at any time and without prior notification and without obligation to update products already supplied. This is a component for professional equipment manufacturers. Read the safety and installation instruction for proper use. Safety aspect and EMC-aspect must be considered in the end application.

TECHNICAL DATASHEET

251E-28-SD

300 Watt, non isolated, single output buck-boost converter

INPUT

parameter	unit	conditions	min	typ	max
Input voltage range	VDC	loNom	16	24	36
No load input current	mA	UiNom		60	
Max. input current	Α	UiNom		19	
Input start up voltage	VDC	UiNom		17.0	
Undervoltage lockout	VDC	UiNom		15.8	
Input quiescent current in shutdown mode	mA	UiNom		0.30	
Input current overshoot during soft start ramp up	%	loNom		200	
Generated AC-ripple on the supply (BW=20MHz)	mVp-p	UiNom/IoNom		75	
Generated HF-noise on the supply (BW=20MHz)	mVp-p	UiNom/IoNom		40	
Typical input noise slew rate (BW=500MHz)	mVp-p	UiNom/IoNom		120	

OUTPUT

parameter	unit	conditions	min typ max
Output voltage	VDC	IoNom	28.0
Minimum required load to obtain the specified output voltage	%	UiNom	0
Generated AC-ripple on the output (BW=20MHz)	mVp-p	UiNom/IoNom	20
Generated HF-noise on the output (BW=20MHz)	mVp-p	UiNom/IoNom	110
Typical output noise slew rate (BW=500MHz)	mVp-p	UiNom/IoNom	40
Output voltage accuracy	%	IoNom	+/-2.00%
Output voltage overshoot at initial switch-on	%	IoNom	overdamped
Rated output power	W		300

CONTROL

parameter	unit	conditions mir	ı typ	max
Static line regulation	%	IoNom/UiMinUiMax	0.10	
Static load regulation	%	IoMinIoMax/UiNom	0.0	
Dynamic load change adjusting time	ms	LoadChange 1090%	1.00	
Dynamic load change deviation to nominal output voltage	V	LoadChange 1090%	0.40	
Maximum admissible capacitive load	uF	loNom	infinite	
Initial switch on time	ms	loNom	50	
Softstart ramp up time	ms	IoNom	15	

All technical and general information is provided in all conscience. However, completeness and accuracy cannot be guaranteed. Demke recommends to fully test the product in its determined application. Due to permanent improvements to our products, we reserve the right to change specifications at any time and without prior notification and without obligation to update products already supplied. This is a component for professional equipment manufacturers. Read the safety and installation instruction for proper use. Safety aspect and EMC-aspect must be considered in the end application.

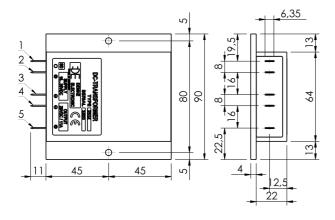
TECHNICAL DATASHEET

251E-28-SD

300 Watt, non isolated, single output buck-boost converter

MECHANICAL

haramerei	unic		
Overall dimensions	mm	90x90x26	
Weight	g	335	


Pin No.	Function	Electrical Determination
1	SD	Shut down
2	Vi+	Input voltage positive
3	Vi-	Input voltage negative
4	Vo-	Output voltage negative
5	Vo+	Output voltage positive

Mechanical dimensions and Pin configuration

All dimensions in mm

Connector type: Flat pin plug 6.3mm

Case: 90x90x26

All technical and general information is provided in all conscience. However, completeness and accuracy cannot be guaranteed. Demke recommends to fully test the product in its determined application. Due to permanent improvements to our products, we reserve the right to change specifications at any time and without prior notification and without obligation to update products already supplied. This is a component for professional equipment manufacturers. Read the safety and installation instruction for proper use. Safety aspect and EMC-aspect must be considered in the end application.

